Endovenous Laser Ablation an advanced approach to an old problem

Daryl S. Kucey MD MSc MPH FRCSC
Davisville Vein Clinic
Division of Vascular Surgery
University of Toronto

The Problem

Saphenous Incompetence

Alternatives for Treatment

- Conservative (stockings)
- Sclerotherapy
- Surgical Treatments
 - High Ligation and Stripping
 - Thermal Ablation

Historical Approach

- Treatment Options
 - Conservative
 - Sclerotherapy
 - Surgery
- Treatment Choice
 - Clinical Judgement
 - Patient Preference
 - Availability of Resources

HIstorical Approach Drawbacks

- Lack of Resources (OR Time)
 - Lengthy waiting list
- Recurrences / Treatment Failures
- Morbidity
- Patient Expectations
- Surgeon satisfaction

The Ideal Treatment

Easy access to effective treatment

High success / low recurrence

Safe

Patient satisfaction

Treatment Objectives

- Treat vast majority outside OR
- Limit recurrences or treatment failures

- Minimize complications
- Keep surgeons interested in this clinical problem

Treatment Approach

Office based interventions

Thorough pre-treatment evaluation

Minimally invasive, image-guided interventions

Office Based Interventions

EVLA

Foam Sclerotherapy

Office Based Interventions

- Local Anesthetic Only
- Early recovery
- Superior Cosmesis
- High success rate
- Low complications

Pre-Treatment Evaluation

- Patient (and treatment) selection is key to success
- Clinical Judgement alone is inadequate
- Must understand the anatomy and physiology of reflux
- Image-guided surgery

SFJ – valve cusps

SFJ – reflux with valsalva

GSV – mid thigh peforator

GSV – mid thigh reflux

Endovenous Laser Ablation

- Office Intervention
- Image guidance
- Local Anesthesia
- No incision
- Less Pain
- Early Recovery

Endovenous Laser Therapy (EVLT)

- First described by Navarro, Min, Bone (Dermatol Surg 2001;27:117-122).
- Laser fiber (1470nm wavelength)
- Chromophore of laser light tuned to wall of vein
- Thermal injury to endothelium
- Initially thrombotic occlusion
- Ultimately fibrosis, ablation of the lumen

Stepwise Approach to Success

- Patient Selection
- Venous access
- Guidewire insertion
- Positioning of sheath and laser fiber
- Tumescent anesthesia
- Thermal ablation
- Post-treatment compression

Patient Selection

- Large varicose veins due to underlying saphenous incompetence
- Long, short or accessory saphenous
- Saphenous can be large, tortuous, duplicate

Access and positioning

- Percutaneous always
- Imaging is key
- Guidewire / 5 fr sheath
- Position laser at junction

Tumescence

- 1% Lidocaine diluted 1 to 10 with NS -analgesia
- Heat Sink
 - prevent injury to adjacent tissues
- Promotes venospasm
 - To reduce blood volume and facilitate thermal injury

Thermal Ablation

- 6 W continuous
- Pullback rate 1-3mm per second
- Endothelial injury (or "controlled"phlebitis)
- Tumescence and venospasm are essential

Compression

Greater Saphenous Vein

Pre-Treatment Post-Treatment

Greater Saphenous Vein

Pre-Treatment 2 Wks Post-EVLT

Lesser Saphenous Vein

Pre-Treatment

Post-Treatment

Accessory Saphenous Vein

Pre-Treatment

Post-Treatment

Conclusions

"EVLA is a safe, effective procedure and an advanced office-based alternative to surgical stripping."

